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Stability of the Langdon-Dawson Advective Algorithm* 

A recent article by Godfrey [I] investigates the numerical stability of one- 
dimensional electromagnetic PIG-CIC plasma simulation algorithms [2, 31, with 
emphasis on the numerical Cherenkov instability [4, 5 1. In [ 1, Sect. 61, an advective 
differencing scheme incorrectly attributed to Langdon was discussed. This note 
clarifies part of that discussion, analyzes the actual Langdon-Dawson one- 
dimensional algorithm [6], and suggests a corresponding multidimensional 
differencing scheme. 

The basic approach of advective differencing is to integrate numerically 
Maxwell’s equations along their vacuum characteristics. This is straightforward 
in one dimension; where right- and left-going (*) transverse waves explicitly 
decouple, and leads to 

with a similar equation for E, and B, . The integer subscripts m and n designate 
time and space, respectively. Note that Eq. (1) requires dx = dt. (Units are 
chosen such that the speed of light and the plasma frequency each equal one.) 

It can be shown that the improved stability associated with advective differencing 
schemes is due not so much to the dispersionless vacuum transport of the fields, 
per se, as to the less conventional methods of determining the mesh currents 
usually employed with advective differencing. Thus, for the case considered in [l], 
J+ and J- are equal, defined in the notation of [5] as 

J m+l,2,n*l,2 = 
s 

dc dxj(t, x) $f8(r - cm+& + w - 4n+r)l w - X&i2I (24 

in the limit of vanishing E > 0, or more explicity, 
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In other words, currents are interpolated onto the mesh with particle positions 
at times tmi.l and t, , but with velocities from twz.~l,2, and then averaged to give 
J m+1,2 . In Eq. (2), S(x) is a spatial interpolation function, while j(t, x) is the 
particle current; Xi and Vi are the position and velocity of particle i. The principal 
effect of so defining J is to smooth the current term in the dispersion relation 
for Eq. (I) by the velocity dependent factor cos(kv Lit/2). For u large the factor 
suppresses nonphysical effects for k near +/Ax. 

On the other hand, it also distorts physical phenomena in this region of wave- 
number space. This shortcoming is, however, overstated in [I]. For any algorithm, 
and not for this one only, caution must be exercised in the interpretation of the 
behavior of large k modes. This definition of J is successfully employed in electro- 
magnetic codes at the Lawrence Livermore Laboratory [6] and the Naval Research 
Laboratory [7]. 

The differencing scheme actually developed by Langdon and Dawson [6] 
defines mesh current not as in Eq. (2), but as 

J* n+1/2,n+112 = s dt dxj(t, x) 
. #(t - tm+pJ S(x - x,4 + W - tm+J s(x - xJlt (34 

or 

Current is averaged along vacuum characteristics rather than at tied points in 
space. 

The corresponding dispersion relation for the single-species cold-beam problem 
analyzed in [l] reads 

sin2(w d t/2) - sin2(k Lilt/2) 

= / S(k)12 (dt/2)2 csc[( w - kv) d t/2] {cos(k d t/2) cos(ku d t/2) 

x [sin(w dt/2) cos(k dt/2) - ZJ cos(w dt/2) sin(k dt/2)] 

+ sin(k d t/2) sin(kv d t/2) 

x [sin(k dt/2) cos(w dt/2) - u sin(w At/2) cos(k dt/2)]). (4) 

For small particle velocities the right side of Eq. (4) reduces to the familiar expres- 
sion characteristic of many differencing schemes [8] multiplied by the factor 
cos(k dt/2). Any numerical problems resulting from the tangency of light curves 
near k = +/ox are, therefore, virtually eliminated. Moreover, as ZI increases, 
the light curves actually more apart slightly. 
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This can be seen most clearly for ti = & 1, when Eq. (4) becomes 

sin*(w At/2) - sin2(k Lit/2) = 1 S(k)12 (dt/2)2 cos(k At). (5) 

The plasma reactance is, in effect, negative for / k I > rr/2Ax, although the term 
is so small in this region that it scarcely affects simulation accuracy. That the 
phase velocity of the light waves falls below one, does, however, suggest the 
possibility of a numerical Cherenkov instability. Fortunately, the sign of the 
coupling term between the spurious beaming mode [I] and the nearby light mode 
is positive, and no instability occurs. Figure 1 illustrates the case Ax = At = 0.5 
and u = 0.95. Frequencies are purely real. 

12 / 1 I I 

AxzAt=O5 

FIG. 1. Solution of Eq. (4) in the range 0 < w < 2m/At, 0 -c k < n-/Ax for Ax = At = 0.5 
and u = 0.95. 

It is instructive to recast Eqs. (1) and (3) as 

where 
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or 

J mfr,n = T Vi.m*l12S(Xi.m - Xn>* V-4 

If Eq. (6) is Fourier transformed in space, the resulting equations are readily 
generalized to higher dimensions, 

E - E, cos(k At) + i& x B, sin@ At) m+1 - 

- HJm+l-t + Jm+< cos@ At)1 L-it 
B m+1 = B, cos(k At) - if x E, sin& At) 

+ $ik x Jm+r sin(k At) At. 

(8) 

Here, k is a unit vector along k. By one means or another, k * E = -ip also 
must be enforced [5, 7, 91. Solving Maxwell’s equations by Fourier transform 
methods already has been demonstrated as practical [lo, 111. The only real dis- 
advantage of Eq. (8) is the necessity of determining and separately storing J twice 
per time step. (It may also be possible to extend Eq. (6) to higher dimensions 
without recourse to Fourier transforms. We have not yet pursued this idea.) 

To avoid the extra storage requirements, one may wish to employ Eq. (2) 
instead of Eq. (3). The new finite difference equations, 

E m+l = E, co@ At) + i& x B, sin@ At) - Jm+1,2 cos(k b/2) dt, 
69 

B m+1 = B, cos(k dt) - ifr x E, sin& d t) -j- ik X Jm+112 sin& dt/2) dt, 

are strikingly similar to those of J. P. Boris et al. [lo]. 
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